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Abstract

The brief review of do Carmo’s Differential Geometry of Curves and Surfaces.
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1 Curves

1.1 Introduction

1.2 Parametrized Curves

Definition. A parametrized differentiable curve is a differentiable map α : I → R3 of an open
interval I = (a, b) of the real line R into R3.

1.3 Regular Curves; Arc Length

Let α : I → R3 be a parametrized differentiable curve. For each t ∈ I where α′(t) 6= 0, there
is a well-defined straight line, which contains the point α(t) and the vector α′(t). This line is
called the tangent line to α at t.

Definition. A parametrized differentiable curve α : I → R3 is said to be regular if α′(t) 6= 0
for all t ∈ I.

Given t ∈ I, the arc length of a regular parametrized curve α : I → R3, from the point t0,
is by definition

s(t) =

∫ t

t0

|α′(t)| dt =

∫ t

t0

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt

It can happen that the parameter t is already the arc length measured from some point. In
this case, ds/dt = 1 = |α′(t)|.

1.4 The Vector Product in R3

Two ordered bases e = {ei} and f = {fi} of an n-dimensional vector space V have the
same orientation if the matrix of change of basis ha positive determinant. We denote this
relation by e ∼ f .

1.5 The Local Theory of Curves Parametrized by Arc Length

Definition. Let α : I → R3 be a curve parametrized by arc length s ∈ I. The number
|α′′(s)| = k(s) is called the curvature of α at s.
Notice: α′(s) has

:::::
unit

:::::::
length, since α is a curve parametrized by arc length s.

At points where k(s) 6= 0, a unit vector n(s) in the direction α′′(s) is well defined by
the equation α′′(s) = k(s)n(s). n(s) is normal to α′(s) and is called the normal vector at s.
The plane determined by the unit tangent and normal vectors, α′(s) and n(s), is called the
osculating plane at s. At points where k(s) = 0, the normal vector (and therefore the osculating
plane) is not defined.

The unit vector b(s) = t(s) ∧ n(s) is normal to the osculating plane and will be called the
binormal vector at s.

Definition. Let α : I → R3 be a curve parametrized by arc length s such that α′′(s) 6= 0,
s ∈ I. The number τ(s) defined by b′(s) = τ(s)n(s) is called the torsion of α at s.{

α′′(s) = k(s)n(s)

α′(s) = t(s)

{
b(s) = t(s) ∧ n(s)

b′(s) = t(s) ∧ n′(s) = τ(s)n(s)
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The trihedron formed by three orthogonal unit vectors t(s), n(s), b(s) is referred to as the
Frenet trihedron at s. And the Frenet Formulas :

t′ = kn

n′ = −kt− τb
b′ = τn

The tb plane is called the rectifying plane and the nb plane the nomal plane. The lines wichi
contain n(s) and b(s) and pass through α(s) are called the principla normal and the binormal .

Fundamental Theorem of the Local Theory of Curves Given differentiable functions
k(s) > 0 and τ(s), s ∈ I, there exists a regular parametrized curve α : I → R3 such that
s is the arc length, k(s) is the curvature, and τ(s) is the torsion of α. Moreover, any other
curve ᾱ, satisfying the same conditions, differs from α by a rigid motion; that is, there exists an
orthogonal linear map ρ of R3, with positive determinant, and a vector c such that ᾱ = ρ◦α+c.

1.6 The Local Canonical Form †

α(s)− α(0) = (s− k2

6
s3)t+ (

k

2
s2 +

k′

6
s3)n− s3

6
kτb+R

x(s) = s− k2

6
s3 +Rx y(s) =

k

2
s2 +

k′

6
s3 +Ry z(s) = −kτ

6
s3 +Rz

The representation above is called the local canonical form of α, in a neighborhood of s = 0.

1.7 Global Properties of Plane Curves †
A differentiable function on a closed interval [a, b] is the restriction of a differentiable function
defined on an open interval containing [a, b].

A closed plane curve is a regular parametrized curve α : I → R3 such that α and all its
derivatives agree at a and b; that

α(a) = α(b), α′(a) = α′(b), α′′(a) = α′′(b)

The curve α is simple if it has no further self-intersections.

The Isoperimetric Inequality

Theorem. Let C be a simple closed plane curve with length l, and let A be the area of the
region bounded by C. Then

l2 − 4πA ≥ 0

and equality holds if and only if C is a circle.

The Four-Vertex Theorem

A vertex of a regular plane curve α : [a, b]→ R2 is a point t ∈ [a, b] where k′(t) = 0.

Theorem. A simple closed convex curve has at least four vertices.

The Cauchy-Crofton Formula

Let C be a regular plane curve with length l. The measure of the set of straight lines (counted
with multiplicities) which meet C is equal to 2l.
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2 Regular Surfaces

2.1 Introduction

In contrast to the treatment of curves in chapter 1, regular surfaces are defined as sets rather
than maps.

2.2 Regular Surfaces; Inverse Images of Regular Values

Definition 1. A subset S ⊂ R3 is a regular surface if, for each p ∈ S, there exists a neigh-
borhood V in R3 and a map x : U → V ∩ S of an open set U ⊂ R2 onto V ∩ S ⊂ R3 such
that

1. x is differentiable. This means that if we write x(u, v) = (x(u, v), y(u, v), z(u, v)), the
functions x y z have continuous partial derivatives of all orders in U .

2. x is a homeomorphism. Since x is continuous by condition 1, this means that x has an
inverse x−1 : V ∩S → U which is continuous; that is, x−1 is the restriction of a continuous
map F : W ⊂ R3 → R2 defined on an open set W containing V ∩ S.

3. (The regularity condition) For each q ∈ U , the differential dxq : R2 → R3 is one-to-one.

The mapping x is called a parametrization of a system of (local) coordiantes in (a neigh-
borhood of) p. The neighborhood V ∩ S of p in S is called a coordinate neighborhood .

Proposition 1. If f : U → R is a differentiable function in an open set U of R2, then the
graph of f, that is the subset of R3 given by (x, y, f(x, y)) for (x, y) ∈ U , is a regular surface.

Definition 2. Given a differentiable map F : U ⊂ Rn → Rm defined in an open set U of Rn

we say that p ∈ U is a critical point of F if the differential dFp : Rn → Rm is not a surjective
(or onto) mapping. The image F (p) ∈ Rm of a critical value is called a regular value of F .

Proposition 2. If f : U ⊂ R3 → R is a differentiable function and a ∈ f(U) is a regular value
of f , then f−1(a) is a regular surface in R3.

Proposition 3. Let S ⊂ R3 be a regular surface and p ∈ S. Then there exists a neighborhood
V of p in S such that V is the graph of a differentiable funciton which has one of the following
three forms: z = f(x, y), y = g(x, z), x = h(y, z).

Proposition 4. Let p ∈ S be a point of a regular surface S and let x : U ⊂ R2 → R3 be a map
with p ∈ x(U) ⊂ S such that conditions 1 and 3 of Def. 1 hold. Assume that x is one-to-one.
Then x−1 is continuous.

2.3 Change of Parameters; Differential Functions on Surfaces

Proposition 1 (Change of Parameters). Let p be a point of a regular surface S, and let
x : U ⊂ R2 → S, y : V ⊂ R2 → S be two parametrizations of S such that p ∈ x(U)∩y(V ) = W .
Then the "change of coordinates" h = x−1 ◦ y : y−1(W ) → x−1(W ) is a diffeomorphism; that
is h is differentiable and has a differentiable inverse h−1.
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Definition 1. Let f : V ⊂ S → R be a function defined in an open subset V of a regular surface
S. Then f is said to be differentiable at p ∈ V if for some parametrization x : U ⊂ R2 → S with
p ∈ x(U) ⊂ V , the composition f ◦ x : U ⊂ R2 → R is differentiable at x−1(p) is differentiable
in V if it is differentiable at all points of V .

Two regular surfaces S1 and S2 are diffeomorphic if there exists a differentiable map φ :
S1 → S2 with a differentiable inverse φ−1 : S2 → S1. Such a φ is called a diffeomorphism from
S1 to S2.

Since S can be entirely covered by similar parametrizations, it follows that S is a regular
surface wihich is called a surface of revolution. The curve C is called the generating curve of
S, and the z axis is the rotation axis of S. The circles described by the points of C are called
the parallels of S, and the various positions of C on S are called the meridians of S.

Definition 2. A parametrized surface x : U ⊂ R2 → R3 is a differentiable map x from an open
set U ⊂ R2 into R3. The set x(U) ⊂ R3 is called the trace of x. x is regular if the differential
dxq : R2 → R3 is one-to-one for all q ∈ U . A point p ∈ U where dxq is not one-to-one is called
a singular point of x.

Proposition 2. Let x : U ⊂ R2 → R3 be a regular parametrized surface and let q ∈ U . Then
there exists a neighborhood V of q in R2 such that x(V ) ⊂ R3 is a regular surface.

2.4 The Tangent Plane; the Differential of a Map

Proposition 1. Let x : U ⊂ R2 → S be a parametrization of a regular surface S and let
q ∈ U . The vector subspace of dimension 2,

dxq(R2) ⊂ R3

coincides with the set of tangent vectors to S at x(q).

The plane dxq(R2), which passes through x(q) = p, does not depend on the parametrization
x. This plane will be called the tangent plane to S at p and will be denoted by Tp(S). The
choice of the parametrization x determines a basis {(∂x/∂u(q), ∂x/∂v(q))} of Tp(S), called the
basis associated to x. Conveniently, ∂x/∂u = xu and ∂x/∂v = xv.

The coordinates of a vector w ∈ Tp(S) in the basis associated to a parametrization x are
determined as follows. w is the velocity vector α′(0) of a curve α = x◦β, where β : (−ε, ε)→ U
is given by β(t) = (u(t), v(t)), with β(0) = q = x−1(p). Thus,

w = α′(0) =
d

dt
(x ◦ β)(0) = dxq(β(0)) · β′(0) =

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

( u′(0)
v′(0)

)
= xu(q)u

′(0) + xv(q)v
′(0)

thus in the basis {xu(q),xv(q)}, w has coordinates (u′(0), v′(0)).

Proposition 2. In the discussion above, given w, the vector β′(0) does not depend on the
choice of α. The map dφp : Tp(S1)→ Tφ(p)(S2) defined by dφp(w) = β′(0) is linear.

Proposition 3. If S1 and S2 are regular surfaces and φ : U ⊂ S1 → S2 is a differentiable
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mapping of an open set U ⊂ S1 such that the differential dφp of φ at p ∈ U is an isomorphism,
then φ is a local diffeomorphism at p.

By fixing a parametrization x : U ⊂ R2 → S at p ∈ S, we can make a definite choice of a
unit normal vector at each point q ∈ x(U) by the rule

N(q) =
xu ∧ xv
|xu ∧ xv|

(q)

2.5 The First Fundamental Form; Area

Ip(w) = 〈w,w〉p = |w|2 ≥ 0

Definition 1. The quadratic form Ip on Tp(S) defined above, is called the first fundamental form
of the regular surface S ⊂ R3 at p ∈ S.

Ip(α
′(0)) = 〈α′(0), α′(0)〉p

= 〈xuu′ + xvv
′,xuu

′ + xvv
′〉

= E(u′)2 + 2Fu′v′ +G(v′)2

E(u0, v0) = 〈xu,xu〉p F (u0, v0) = 〈xu,xv〉p G(u0, v0) = 〈xv,xv〉p

2.6 Orientation of Surfaces †
The bases {xu,xv} and {x̄ū, x̄v̄} determine the same orientation of Tp(S) if and only if the
Jacobian

∂(u, v)

∂(ū, v̄)

of the coordinate change is positive.

Definition 1. A regular surface S is called orientable if it is possible to cover it with a family
of coordinate neighborhoods in such a way that if a point p ∈ S belongs to two neighborhoods
of this family, then the change of coordinates has positive Jacobian at p. The choice of such
a family is called an orientation of S, and S in this case is called oriented . If such a choice is
not possible, the surface is called nonorientable.

Proposition 1. A regular surface S ⊂ R3 is orientable if and only if there exists a differentiable
field of unit normal vectors N : S → R3 on S.

Proposition 2. If a regular surface is given by S = {(x, y, z) ∈ R3; f(x, y, z) = a}, where
f : U ⊂ R3 → R is differentiable and a is a regular value of f , then S is orientable.

:::::::::::
Orientation

:::
is

::
a

:::::::
global

::::::::::
property,

::
in

::::
the

::::::
sense

::::::
that

::
it

:::::::::
involves

::::
the

::::::
whole

:::::::::
surface.

2.7 A Characterization of Compact Orientable Surfaces †
That

::
an

:::::::::::
orientable

::::::::
surface

:::
in

::::
R3

::
is

::::
the

::::::::
inverse

:::::::
image

:::
of

::
a

::::::::
regular

::::::
value

:::
of

::::::
some

::::::::::::::
differentiable

::::::::
function, is true.

Proposition 1. Let S be a regular surface and x : U → S be a parametrizatino of a neigh-
borhood of a point p = x(u0, v0) ∈ S. Then there exists a neighborhood W ⊂ x(U) of p in S
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and a number ε > 0 such that the segments of the normal lines passing through points q ∈ W ,
with center at q and length 2ε, are disjoint (that is, W has a tubular neighborhood.)

Proposition 2. Assume the existence of a tubular neighborhood V ⊂ R3 of an orientable
surface S ⊂ R3, and choose an orientation for S. Then the function g : V → R, defined as the
oriented distance from a point of V to the foot of the unique normal line passing through this
point, is differentiable and has zero as a regular value.

Let A be a subset of R3.Wesaythatp ∈ R3 is a limit point of A if
:::::
every neighborhood of p

in R3 contains a point of A distinct from p. A is said to be closed if it contains
:::
all its limit

points. A is bounded if it is contained in
:::::
some ball of R3. If A is closed and bounded, it is

called a compact set .

Property 1 (Bolzano-Weierstrass). Let A ⊂ R3 be a compact set. Then every infinite
subset of A has at least one limit point in A.

Property 2 (Heine-Borel). Let A ⊂ R3 be a compact set and {Uα} be a family of open sets
of A such that ∪αUα = A. Then it is possible to choose a finite number Uk1 , · · · , Ukn of Uα
such that ∪Uki = A, i = 1, · · · , n.

Property 3 (Lebesgue). Let A ⊂ R3 be a compact set and {Uα} a family of open sets of A
such that ∪αUα = A. Then there exists a number δ > 0 (the Lebesgue number of the family
{Uα}) such that whenever two points p, q ∈ A are at a distance d(p, q) < δ, then p and q belong
to some Uα.

Proposition 3. Let S ⊂ R3 be a regular, compact, orientable surface. Then there exists
a number ε > 0 such that whenever p, q ∈ S the segments of the normal lines of length 2ε,
centered in p and q, are disjoint (that is, S has a tubular neighborhood).

Theorem. Let S ⊂ R3 be a regular, compact, orientable surface. Then there exists a differ-
entiable function g : V → R, defined in an open set V ⊂ R3, with V ⊃ S (precisely a tubular
neighborhood of S), which has zero as a regular value and is such that S = g−1(0).

2.8 A Geometric Definition of Area †
Proposition. Let x : U → S be a coordinate system in a regular surface S and let R = x(Q)
be a bounded region of S contained in x(U). Then E has an area given by

A(R) =

∫∫
Q

|xu ∧ xv| dudv

6



3 The Geometry of the Gauss Map

3.1 Introduction

We shall try to measure how rapidly a surface S pulls away from the tangent plane Tp(S) in a
neighborhood of a point p ∈ S.

3.2 The Definition of the Gauss Map and Its Fundamental Properties

We shall say that s regular surface is
::::::::::
orientable if it admits a differentiable field of unit normal

vectors defined
:::
on

::::
the

::::::
whole

::::::::
surface; the choice of such a field N is called an orientation of S.

Definition 1. Let S ⊂ R3 be a surface with an orientation N . The map N : S → R3 takes its
values in the unit sphere

S2 = {(x, y, z) ∈ R3; |x2 + y2 + z2 = 1}

The map N : S → S2, thus defined, is called the Gauss map of S.

Proposition 1. The differential dNp : Tp(S)→ Tp(S) of the Gauss map is a self-adjoint linear
map.

Definition 2. The quadratic form IIp, defined in Tp(S) by IIp(v) = −〈dNp(v), v〉 is called the
second fundamental form of S at p.

Definition 3. Let C be a regular curve in S passing through p ∈ S, k the curvature of C at
p, and cos θ = 〈n,N〉, where n is the normal vector to C and N is the normal vector to S at p.
The number kn = k cos θ is then called the normal curvature of C ⊂ S at p.

Proposition 2 (Meusnier). All curves lying on a surface S and having at a given point p ∈ S
the same tangent line have at this point the same normal curvatures.

Definition 4. The maximum normal curvature k1 and the minimum normal curvature k2 are
called the principal curvatures at p; the corresponding directions, that is, the directions given
by the eigenvectors e1, e2, are called principal directions at p.

Definition 5. If a regular connected curve C on S is such that for all p ∈ C the tangent line
of C is a principal direction at p, then C is said to be a line of curvature of S.

Proposition 3 (Olinde Rodrigues). A necessary and sufficient condition for a connected
regular curve C on S to be a line of curvature of S is that

N ′(t) = λ(t)α′(t)

for any parametrization α(t) of C, where N(t) = N ◦ α(t) and λ(t) is a differentiable function
of t. In this case, −λ(t) is the (principal) curvature along α′(t).

Definition 6. Let p ∈ S and let dNp : Tp(S) → Tp(S) be the differential of the Gauss map.
The determinant of dNp is the Gaussian curvature K of S at p. The negative of half of the
trace of dNp is called the mean curvature H of S at p.

7



K = k1k2 H =
k1 + k2

2

Definition 7. A point of a surface S is called

1. Elliptic if det(dNp) > 0.

2. Hyperbolic if det(dNp) < 0.

3. Parabolic if det(dNp) = 0, with dNp 6= 0.

4. Planar if dNp = 0.

Definition 8. If at p ∈ S, k1 = k2, then p is called an umbilical point of S; in particular, the
planar points (k1 = k2 = 0) are umbilical points.

Proposition 4. If all points of a connected surface S are umbilical points, then S is either
contained in a sphere or in a plane.

Definition 9. Let p be a point in S. An asymptotic direction of S at p is a direction of Tp(S)
for which the normal curvature is zero. An asymptotic curve of S is a regular connected curve
C ⊂ S such that for each p ∈ C the tangent line of C at p is an asymptotic direction.

Definition 10. Let p be a point on a surface S. Two nonzero vectors w1, w2 ∈ Tp(S) are
conjugate if 〈dNp(w1), w2〉 = 〈w1, dNp(w2)〉 = 0. Two directions r1, r2 at p are conjugate if a
pair of nonzero vectors w1, w2 parallel to r1 and r2, respectively, are conjugate.

3.3 The Gauss Map in Local Coordinates

Some concepts related to the local behavior of the Gauss map. We shall obtain the expressions
of the second fundamental form and of the differential of the Gauss map in a coordinate system.

All parametrization x : U ⊂ R2 → S considered in this section are assumed to be compatible
with the orientation N of S; that is, in x(U).

N =
xu ∧ xv
|xu ∧ xv|

The tangent vector to α(t) at p is α′ = xuu
′ + xvv

′ and

dN(α′) = N ′(u(t), v(t)) = Nuu
′ +Nvv

′

since Nu and Nv belong to Tp(S), we may write

dN

(
u′

v′

)
=

(
a11 a12

a21 a22

)(
u′

v′

)
thus dN is given by the matrix (aij). It is symmetric if {xu,xv} is an orthonormal basis.

The expression of the second fundamental form in the basis {xu,xv} is given by

IIp(α
′) = −〈dN(α′), α′〉 = −〈Nuu

′ +Nvv
′,xuu

′ + xvv
′〉

= e(u′)2 + 2fu′v′ + g(v′)2

8



e = −〈Nu,xu〉 = 〈N,xuu〉 f = −〈Nv,xu〉 = 〈N,xuv〉 g = −〈Nv,xv〉 = 〈N,xvv〉

K = det(aij) =
eg − f 2

EG− F 2

H =
k1 + k2

2
= −1

2
(a11 + a22) =

1

2

eG− 2fF + gE

EG− F 2

k = H ±
√
H2 −K

Proposition 1. Let p ∈ S be an
:::::::
elliptic point of a surface S. Then there exists a neighborhood

V of p in S such that all points in V belong to the same side of the tangent plane Tp(S). Let
p ∈ S be a

:::::::::::
hyperbolic point. Then in each neighborhood of p there exist points of S in

both sides of Tp(S).
Notice that in any neighborhood of such a parabolic point there exist points in both sides

of the tangent plane.

A connected regular curve C in the coordinate neighborhood of x is an asymptotic curve if
and only if for any parametrization α(t) = x(u(t), v(t)), t ∈ I, of C we have II(α′(t)) = 0, for
all t ∈ I, that is, if and only if (the differential equation of the asymptotic curves)

e(u′)2 + 2fu′v′ + g(v′)2 = 0

A connected regular curve C in the coordinate neighborhood of x is a line of curvature if
and only if for any parametrization α(t) = x(u(t), v(t)) of C, t ∈ I, we have

dN(α′(t)) = λ(t)α′(t)

by eliminating λ, we obtain the differential equation of the lines of curvature,∣∣∣∣∣∣
(v′)2 −u′v′ (u′)2

E F G
e f g

∣∣∣∣∣∣ = 0

Proposition 2. Let p be a point of a surface S such that the Gaussian curvature K(p) 6= 0,
and let V be a connected neighborhood of p where K does not change sign. Then

K(p) = lim
A→0

A′

A

where A is the area of a region B ⊂ V containing p, A′ is the area of the image of B by the
Gauss map N : S → S2, and the limit is taken through a sequence of regions Bn that converges
to p, in the sense that any sphere around p contains all Bn, for n sufficiently large.

3.4 Vector Fields †

3.5 Ruled Surfaces and Minimal Surfaces †
Ruled Surfaces

Given a one-parameter family of lines {α(t), w(t)}, the parametrized surface

x(t, v) = α(t) + vw(t), t ∈ I, v ∈ R

is called the ruled surface generated by the family {α(t), w(t)}. The lines Lt are called the
rulings , and the curve α(t) is called a directrix of the surface x.

9



Minimal Surfaces

A regular parametrized surface is called minimal if its mean curvature vanishes everywhere.

Proposition 1. Let x : U → R3 be a regular parametrized surface and let D ⊂ U be a
bounded domain in U . Then x is minimal if and only if A′(0) = 0 for all such D and all normal
variations of x(D̄).

The mean curvature vector defined by H = HN
A regular parametrized surface x = x(u, v) is said to be isothermal if 〈xu,xu〉 = 〈xv,xv〉

and 〈xu,xv〉 = 0.

Proposition 2. Let x = x(u, v) be a regular parametrized surface and assume that x is
isothermal. Then

xuu + xvv = 2λ2H

where λ2 = 〈xu,xu〉 = 〈xv,xv〉.

We say that f is harmonic in U if ∆f = (∂2f/∂u2) + (∂2f/∂v2) = 0.
Corollary : Let x(u, v) = (x(u, v), y(u, v), z(u, v)) be a parametrized surface and assume that
x is

::::::::::
isothermal. Then x is minimal if and only if its coordinate functions x, y, z are

::::::::::
harmonic.

Let x : U ⊂ R2 → R3 be a regular parametrized surface and define complex functions
φ1, φ2, φ3 by

φ1(ζ) =
∂x

∂u
− i∂x

∂v
φ2(ζ) =

∂y

∂u
− i∂y

∂v
φ3(ζ) =

∂z

∂u
− i∂z

∂v

where x, y, z are the component functions of x.
Lemma. x is isothermal if and only if φ2

1 + φ2
2 + φ2

3 ≡ 0. If this last condition is satisfied, x is
minimal if and only if φ1, φ2, φ3 are analytic functions.

Theorem (Osserman). Let S ⊂ R3 be a regular, closed (as a subset of R3) minimal surface
in R3 which is not a plane. The the image of the Gauss map N : S → S2 is dense in the sphere
S2 (that is , arbitrarily close to any point of S2 there is a point of N(S) ⊂ S2).
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4 The Intrinsic Geometry of Surfaces

4.1 Introduction

4.2 Isometries; Conformal Maps

Definition 1. A diffeomorphism φ : S → S̄ is an isometry if for all p ∈ S and all pairs
w1, w2 ∈ Tp(S) we have

〈w1, w2〉p = 〈dφp(w1), dφp(w2)〉φ(p)

The surfaces S and S̄ are then said to be isometric.

Definition 2. A map φ : V → S̄ of a neighborhood V of p ∈ S is a local isometry at p if there
exists a neighborhood V̄ of φ(p) ∈ S̄ such that φ : V → V̄ is an isometry. If there exists a local
isometry into S̄ at every p ∈ S, the surface S is said to be locally isometric to S̄. S and S̄ are
locally isometric if S is locally isometric to S̄ and S̄ is locally isometric to S.

Proposition 1. Assume the existence of parametrizations x : U → S and x̄ : U → S̄ such
that E = Ē, F = F̄ , G = Ḡ in U . Then the map φ = x̄ ◦ x−1 : x(U)→ S̄ is a local isometry.

Definition 3. A diffeomorphism φ : S → S̄ is called a conformal map if for all p ∈ S and all
v1, v2 ∈ Tp(S) we have

〈dφp(v1), dφp(v2)〉 = λ2(p)〈v1, v2〉p
where λ2 is a nowhere-zero differentiable function on S; the surfaces S and S̄ are then said to
be conformal . A map φ : V → S̄ of a neighborhood V of p ∈ S into S̄ is a local conformal map
at p if there exists a neighborhood V̄ of φ(p) such that φ : V → V̄ is a conformal map. If for
each p ∈ S, there exists a local conformal map at p, the surface S is said to be locally conformal
to S̄.

Proposition 2. Let x : U → S and x̄ : U → S̄ be parametrizations such that E = λ2Ē,
F = λ2F̄ , G = λ2Ḡ in U , where λ2 is a nowhere-zero differentiable function in U . Then the
map φ = x̄ ◦ x−1 : x(U)→ S̄ is a local conformal map.

Theorem. Any two regular surfaces are locally conformal.

4.3 The Gauss Theorem and the Equations of Compatibility

Proceeding with the analogy with curves, we are going to assign to each point of a surface a
trihedron given by the vectors xu, xv, and N . We introduce the coefficients Γkij

Γkij =
1

2

∑
l

gkl(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)

All geometric concepts and properties expressed in terms of the Christoffel symbols are invariant
under isometries.

Theorema Egregium (Gauss). The Gaussian curvature K of a surface is invariant by local
isometries.
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Gauss formula :

(Γ2
12)u − (Γ2

11)v + Γ1
12Γ2

11 + Γ2
12Γ2

12 − Γ2
11Γ2

22 − Γ1
11Γ2

12 = −E eg − f 2

EG− F 2
= −EK

Mainardi-Codazzi equation :

ev − fu = eΓ1
12 + f(Γ2

12 − Γ1
11)− gΓ2

11

fv − gu = eΓ1
22 + f(Γ2

22 − Γ1
12)− gΓ2

12

The Gauss formula and the Mainardi-Codazzi equations are known under the name of compat-
ibility equations of the theory of surfaces.

Theorem (Bonnet). Let E,F,G, e, f, g be differentiable functions, defined in an open set
V ⊂ R3, with E > 0 and G > 0. Assume that the given functions satisfy formally the Gauss
and Mainardi-Codazzi equations and that EG − F 2 > 0. Then, for every q ∈ V there exists
a neighborhood U ⊂ V of q and a diffeomorphism x : U → x(U) ⊂ R3 such that the regular
surface x(U) ⊂ R3 has E,F,G and e, f, g as coefficients of the first and second fundamental
forms, respectively. Furthermore, if U is connected and if

x̄ : U → x̄ ⊂ R3

is another diffeomorphism satisfying the same conditions, then there exist a translation T and
a proper linear orthogonal transformation ρ in R3 such that x̄ = T ◦ ρ ◦ x.

4.4 Parallel Transport; Geodesics

Definition 1. Let w be a differentiable vector field in an open set U ⊂ S and p ∈ U . Let
y ∈ Tp(S). Consider a parametrized curve

α : (−ε, ε)→ U

with α(0) = p and α′(0) = y, and let w(t), t ∈ (−ε, ε), be the restriction of the vector field
w to the curve α. The vector obtained by the normal projection of (dw/dt)(0) onto the plane
Tp(S) is called the covariant derivative at p of the vector field w relative to the vector y. This
covariant derivative is denoted by (Dw/Dt)(0) or (Dyw)(p).

Definition 2. A parametrized curve α : [0, l]→ S is the restriction to [0, l] of a differentiable
mapping of (0− ε, l + ε), ε > 0, into S. If α(0) = p and α(l) = q, we say that α joins p to q. α
is regular if α′(t) 6= 0 for t ∈ [0, l].

Dw

dt
= ()

Definition 3. Let α : I → S be a parametrized curve in S. A vector field w along α is a
correspondence that assigns to each t ∈ I a vector

w(t) ∈ Tα(t)(S)

The vector field w is differentiable at t0 ∈ I if for some parametrization x(u, v) in α(t0) the
components a(t), b(t) of w(t) = axu+bxv are differentiable functions of t at t0. w is differentiable
in I if it is differentiable for every t ∈ I.
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Definition 4. Let w be a differentiable vector field along α : I → S. The expression of
(Dw/dt)(t), t ∈ I, is well defined and is called the covariant derivative of w at t.

Definition 5. A vector field w along a parametrized curve α : I → S is said to be parallel if
Dw/dt = 0 for every t ∈ I.

Proposition 1. Let w and v be parallel vector fields along α : I → S. Then 〈w(t), v(t)〉
is constant. In particular, |w(t)| and |v(t)| are constant, and the angle between v(t) and
w(t)isconstant.

Proposition 2. Let α : I → S be a parametrized curve in S and let w0 ∈ Tα(t0)(S), t0 ∈ I.
Then there exists a unique parallel vector field w(t) along α(t), with w(t0) = w0.

Definition 6. Let α : I → S be a parametrized curve and w0 ∈ Tα(t0)(S), t0 ∈ I. Let w
be the parallel vector field along α, with w(t0) = w0. The vector w(t1), t1 ∈ I, is called the
parallel transport of w0 along α at the point t1.

Definition 7. A map α : [0, l]→ S is a parametrized piecewise regular curve if α is continuous
and there exists a subdivision

0 = t0 < t1 < · · · < tk < tk+1 = l

of the interval [0, l] in such a way that the restriction α| [ti, ti+1], i = 0, · · · , k, is a parametrized
regular curve. Each α| [ti, ti+1] is called a regular arc of α.

Definition 8. A nonconstant, parametrized curve γ : I → S is said to be geodesic at t ∈ I if
the field of its tangent vectors γ′(t) is parallel along γ at t; that is

Dγ′(t)

dt
= 0

γ is a parametrized geodesic if it is geodesic for all t ∈ I.

Definition 8a. A regular connected curve C in S is said to be a
:::::::::
geodesic if, for every p ∈ C, the

parametrization α(s) of a coordinate neighborhood of p by the arc length s is a parametrized
geodesic; that is, α′(s) is a parallel vector field along α(s).

Definition 9. Let w be a differentiable field of unit vectors along a parametrized curve α :
I → S on an oriented surface S. Since w(t), t ∈ I, is a unit vector field, (dw/dt)(t) is normal
to w(t), and therefore

Dw

dt
= λ(N ∧ w(t))

The real number λ = λ(t), denoted by [Dw/dt], is called the algebraic value of the covariant derivative
of w at t.

Definition 10. Let C be an oriented regular curve contained on an oriented surface S, and let
α(s) be a parametrization of C, in a neighborhood of p ∈ S, by the arc length s. The algebraic
value of the covariant derivative [Dα′(s)/ds] = kg of α′(s) at p is called the geodesic curvature
of C at p.
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Lemma 1. Let a and b be differentiable functions in I with a2 + b2 = 1 and ϕ0 be such that
a(t0) = cosϕ0, b(t0) = sinϕ0. THen the differentiable function

ϕ = ϕ0

∫ t

t0

(ab′ − ba′)dt

is such that cosϕ(t) = a(t), sinϕ(t) = b(t), t ∈ I, and φ(t0) = ϕ0.

Lemma 2. Let v and w be two differentiable vector fields along the curve α : I → S, with
|w(t)| = |v(t)| = 1, t ∈ I. Then [

Dw

dt

]
−
[
Dv

dt

]
=
dϕ

dt

where ϕ is one of the differentiable determinations of the angle from v to w, as given above.

Proposition 3. Let x(u, v) be an orthogonal parametrization (that is F = 0) of a neighborhood
of an oriented surface S, and w(t) be a differentiable field of unit vectors along the curve
x(u(t), v(t)) .Then [

Dw

dt

]
=

1

2
√
EG

{
Gu

dv

dt
− Ev

du

dt

}
+
dϕ

dt

where ϕ(t) is the angle from x0 to w(t) in the given orientation.

Proposition 4 (Liouville). Let α(s) be a parametrization by arc length of a neighborhood
of a point p ∈ S of a regular oriented curve C on an oriented surface S. Let x(u, v) be an
orthogonal parametrization of S in p and φ(s) be the angle that xu makes with α′(s) in the
given orientation. Then

kg = (kg)1 cosϕ+ (kg)2 sinϕ+
dϕ

ds

where (kg)1 and (kg)2 are the geodesic curvatures of the coordinate curves v = const. and
u = const. respectively.

Proposition 5. Given a point p ∈ S and a vector w ∈ Tp(S), w 6= 0, there exist an ε > 0 and
a unique parametrized geodesic γ : (−ε, ε)→ S such that γ(0) = p, γ′(0) = w.

4.5 The Gauss-Bonnet Theorem and its Applications
3∑
i=1

ϕi − π =

∫∫
T

Kdσ

Let α : [0, l]→ S be a continuous map from the closed interval [0, l] into the regular surface
S. We say that α is a

:::::::
simple,

::::::::
closed,

::::::::::
piecewise

::::::::
regular

::::::::::::::
parametrized

:::::::
curve if

1. α(0) = α(l).

2. t1 6= t2, t1, t2 ∈ [0, l) implies that α(t1) 6= α(t2).

3. There exists a subdivision

0 = t0 < t1 < · · · < tk < tk+1 = l
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of [0, l] such that α is differentiable and regular in each [ti, ti+1], i = 0, · · · , k.

Theorem (of Turning Tangents). With the above notation
k∑
i=0

(ϕi(ti+1)− ϕi(ti)) +
k∑
i=0

θi = ±2π

where the sign plus or minus depends on the orientation of α.

Gauss-Bonnet Theorem (Local). Let x : U → S be an orthogonal parametrization (that
is F = 0), of an oriented surface S, where U ⊂ R2 is homeomorphic to an open disk and
x is compatible with the orientation of S. Let R ⊂ x(U) be a simple region of S and let
α : I → S be such that ∂R = α(I). Assume that α is positively oriented, parametrized by
arc length s, and let α(s0), · · · , α(sk) and θ0, · · · , θk be, respectively, the vertices and the
external angles of α. Then

k∑
i=0

∫ si+1

si

kg(s)ds+

∫∫
R

Kdσ +
k∑
i=0

θi = 2π

where kg(s) is the geodesic curvature of the regular arcs of α andK is the Gaussian curvature
of S.

Proposition 1. Every regular region of a regular surface admits a triangulation.

Proposition 2. Let S be an oriented surface and xα, α ∈ A, a family of parametrizations
compatible with the orientation of S. Let R ⊂ S be a regular region of S. Then there
is a triangulation I of R such that every triangle T ∈ I is contained in some coordinate
neighborhood of the family xα. Furthermore, if the boundary of every triangle of I is
positively oriented, adjacent triangles determine opposite orientations in the common edge.

Proposition 3. If R ⊂ S is a regular region of a surface S, the Euler-Poincaré characteristic
does not depend on the triangulation of R. It is convenient, therefore, to denote it by χ(R).

Proposition 4. Let S ⊂ R3 be a compact connected surface; then one of the values
2, 0,−2, · · · ,−2n, · · · is assumed by the Euler-Poincaré characteristic χ(S). Furthermore, if
S ′ ⊂ R3 is another compact surface and χ(S) = χ(S ′), then S is homeomorphic to S ′.

In other words, every compact connected surface S ⊂ R3 is homeomorphic to a sphere with
a certain number g of handles. The number

g =
2− χ(S)

2

is called the genus of S.

Proposition 5. With the above notation, the sum
k∑
i=1

∫∫
x−1
i (Ti)

f(ui, vi)
√
EiGi − F 2

i duidvi
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does not depend on the triangulation I or on the family xi of parametrizations of S.

GLOBAL GAUSS-BONNET THEOREM. LetR ⊂ S be a regular region of an oriented
surface and let C1, · · · , Cn be the closed, simple, piecewise regular curves which form the
boundary ∂R of R. Suppose that each Ci is positively oriented and let θ1, · · · , θp be the set
of all external angles of the curves C1, · · · , Cn. Then

n∑
i=1

∫
Ci

kg(s)ds+

∫∫
R

Kdσ +

p∑
l=1

θl = 2πχ(R)

where s denotes the arc length of Ci, and the integral over Ci means the sum of integrals in
every regular arc of Ci.

Corollary 1. If R is a simple region of S, then

k∑
i=1

∫ si+1

si

kg(s)ds+

∫∫
R

Kdσ +

p∑
l=1

θl = 2π

Corollary 2. Let S be an orientable compact surface; then∫∫
S

Kdσ = 2πχ(S)

Poincaré’s theorem The sum of the indices of a differentiable vector field v with isolated
singular points on a compact surface S is equal to the Euler-Poincaré characteristic of S.

4.6 The Exponential Map. Geodesic Polar Coordinates

Lemma 1. If the geodesic γ(t, v) is defined for t ∈ (−ε, ε), then the geodesic γ(t, λv),
λ 6= 0 ∈ R, is defined for t ∈ (−ε/λ, ε/λ), and γ(t, λv) = γ(λt, v).

Proposition 1. Given p ∈ S there exists an ε > 0 such that expp is defined and differentiable
in the interior Bε of a disk of radius ε of Tp(S), with center in the origin.

Proposition 2. expp : Bε ⊂ Tp(S)→ S is a diffeomorphism in a neighborhood U ⊂ Bε of
the origin 0 of Tp(S).

Proposition 3. Let x : U − l → V − L be a system of geodesic polar coordinates (ρ, θ).
Then the coefficients E = E(ρ, θ), F = F (ρ, θ), and G = G(ρ, θ) of the first fundamental
form satisfy the conditions

E = 1 F = 0 lim
ρ→0

G = 0 lim
ρ→0

(
√
G)ρ = 1

Theorem (Minding). Any two regular surfaces with the same constant Gaussian curvature
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are locally isometric. More precisely, let S1, S2 be two regular surfaces with the same constant
curvatureK. Choose points p1 ∈ S1, p2 ∈ S2, and orthonormal basis e1, e2 ∈ Tp1(S1), f1, f2 ∈
Tp2(S2). Then there exist neighborhoods V1 of p1, V2 of p2 and an isometry ψ : V1 → V2 such
that dψ(e1) = f1, dψ(e2) = f2.

Proposition 4. Let p be a point on a surface S. Then, there exists a neighborhood W ⊂ S
of p such that if γ : I → W is a parametrized geodesic with γ(0) = p, γ(t1) = q, t1 ∈ I, and
α : [0, t1]→ S is a parametrized regular curve joining p to q, we have

lγ ≤ lα

where lα denotes the length of the curve α. Moreover, if lγ = lα, then the trace of γ coincides
with the trace of α between p and q.

Proposition 5. Let α : I → S be a regular parametrized curve with a parameter propor-
tional to arc length. Suppose that the arc length of α between any two points t, τ ∈ I, is
smaller than or equal to the arc length of any regular parametrized curve joining α(t) to
α(τ). Then α is a geodesic.

4.7 Further Properties of Geodesics. Convex Neighborhoods †

Theorem 1. Given p ∈ S there exist numbers ε1 > 0, ε2 > 0 and a differentiable map

γ : (−2, ε2)×Bε1 → S, Bε1 ⊂ Tp(S)

such that for v ∈ Bε1 , v 6= 0, t ∈ (−2, ε2) the curve t → γ(t, v) is the geodesic of S with
γ(0, v) = p, γ′(0, v) = v, and for v = 0, γ(t, 0) = p.

Theorem 1a. Given p ∈ S, there exist positive numbers ε, ε1, ε2 and a differentiable map

γ : (−2, ε2)× U→ S

where
U = (q, v); q ∈ Bε(p), v ∈ Bε1(0) ⊂ Tq(S)

such that γ(t, q, 0) = q, and for v 6= 0 the curve

t→ γ(t, q, v), t ∈ (−2, ε2)

is the geodesic of S with γ(0, q, v) = q, γ′(0, q, v) = v.

Proposition 1. Given p ∈ S there exist a neighborhood W of p in S and a number δ > 0
such that for every q ∈ W , expq is a diffeomorphism on Bδ(0) ⊂ Tq(S) and expq(Bδ(0)) ⊃ W ;
that is, W is a normal neighborhood of all its points.

Proposition 2. Let α : I → S be a parametrized, piecewise regular curve such that in
each regular arc the parameter is proportional to the arc length. Suppose that the arc
length between any two of its points is smaller than or equal to the arc length of any
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parametrized regular curve joining these points. Then α is a geodesic; in particular, α is
regular everywhere.

Proposition 3. For each point p ∈ S there exists a positive number ε with the following
property: If a geodesic γ(t) is tangent to the geodesic circle Sr(p), r < ε, at γ(0), then, for
t 6= 0 small, γ(t) is outside Br(p).

Proposition 4 (Existence of Convex Neighborhoods). For each point p ∈ S there
exists a number c > 0 such that Bc(p) is convex; that is, any two points of Bc(p) can be
joined by a unique minimal geodesic in Bc(p).
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